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Abstract

Introduction: Cardiovascular disease is generally con-
sidered the most prevalent cause of morbidity in the mod-
ern world, and cardiac arrest, in particular, causes nearly
50 % of deaths linked with heart attack and stroke in the
US. Surviving cardiac arrest could still lead to brain in-
jury and, consequently, death. Our main aim is to mitigate
incorrect prognoses in measuring patients’ recovery by ex-
ploiting the power of machine learning. Methods: We use
the training set from the unofficial phase comprising 607
comatose adults following recovery from cardiac arrest to
develop two attention-based networks using various fea-
tures. 486 subjects are used for training and 10-fold cross-
validation; the remainder is used for testing and evalua-
tion. Results: Despite an official challenge score of 0.00,
Team KU’s best attention-based models yielded a testing
accuracy of 62.00 %, an F-measure of 61.20 %; beating
our random forest used in the unofficial phase at 55.58 %,
and an area under the receiver operating characteristics
(AUC) of 0.63 for outcome classification and a mean ab-
solute error of 2.49 for CPC prediction with 607 subjects;
nearly half of the provided data in the official phase. Con-
clusion: This study paves the way toward implementing ef-
ficient machine learning to assess brain injury in comatose
patients, even in resource-restricted settings. Thus allow-
ing early, automated prediction of recovery.

1. Introduction

Cardiovascular diseases, more specifically cardiac ar-
rests, are a common cause of morbidity in the modern
world with low rates of survival, and even in that sce-
nario, survivors can become comatose, following which

could be severe brain injury, which is the most common
cause of death [1–3]. During care, physicians make their
prognoses based on experience and knowledge, which re-
sults in hospitalization and care for good ones and possi-
ble withdrawal of life support for poor ones. This makes
an incorrect, poor prognosis dangerous and should not be
left up to the subjective interpretation of the patient’s con-
dition. Therefore, continuous monitoring of patient brain
activity via electroencephalography (EEG) [4] and other
vitals, such as electrocardiography (ECG), is necessary to
provide proper prognosis and care. Using EEG and ECG
signals eliminates subjectivity in predicting neurological
outcome and certain patterns in brain activity, for exam-
ple, enable and encourage the development of automated
methods of prognosis [5–9].

Automating prognosis mitigates subjectivity and elim-
inates the need for specialists to inspect the EEGs and
ECGs and draw conclusions, making the prognostic
methodology applicable in environments where neurolo-
gists are not readily available. Consequently, this reduces
the cost of prognosis and makes it less time-consuming. To
this end, the International Cardiac Arrest Research Consor-
tium (I-CARE) developed a dataset gathered from seven
hospitals in the United States, and we, Team KU use that
dataset to develop our models for the 2023 George B.
Moody Physionet Challenge [10–12]. The official dataset
comprises patient information, EEG data, ECG data, and
neurological outcomes from a large number of subjects at
1,020, with the EEG and ECG recordings being up to 72
hours. The patients were comatose following cardiac ar-
rest and had their brain activity monitored via a 19-channel
EEG and their heart rhythm recorded via ECG. Their re-
covery is recorded as part of patient information, which
includes their ages, sexes, the hospital they were in, the
time of return to spontaneous circulation following cardiac
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Figure 1. The baseline approach followed to predict recov-
ery using random forest for the unofficial phase. Patient In-
formation is described in the final paragraph of Section 1.

arrest (ROSC), the location of the event- or whether the
cardiac arrest occurred out of the hospital (OHCA), the
cardiac rhythm at the time of resuscitation, targeted tem-
perature management (TTM)- or the desired control tem-
perature, and neurological outcome. The cardiac rhythm
field describes whether the abnormality of cardiac rhythm
could be treated via shock (defibrillation), like ventricular
fibrillation or tachycardia, or not like asystole or flat-lining,
and neurological outcome is measured using the Cerebral
Performance Category (CPC) scale of 1-5, where 1 repre-
sents the best outcome of neurological function where the
patient can return to independent living, 2 represents mod-
erate neurological disability but maintains independent liv-
ing, 3 represents severe disability, 4 represents unrespon-
sive wakefulness syndrome (UWS), where the patient dis-
plays reflexive behavior but without signs of consciousness
[13], and 5 is dead. The neurological outcome is further
simplified or binarized, where CPCs 1 and 2 constitute a
good outcome, and 3, 4, and 5 constitute a poor one.

2. Methodology

The challenge aims to develop an objective method to
predict neurological recovery without requiring special-
ized individuals to make prognosis simpler for environ-
ments lacking that resource. We originally thought of
going along these lines when developing our algorithm
as well; we aimed to develop a methodology that is not
resource-intensive to make the objective automated predic-
tion even less demanding and expensive.

Using the EEG and ECG signals as inputs directly into
any of our models would greatly increase computational

cost. Instead, we opt to pre-process the signals and extract
features, even reducing the number of channels in some
experiments. The EEG and ECG signals were bandpass
filtered using the frequency range [0.1Hz − 30Hz] and
resampled at 100 Hz.

Our first experiment in the unofficial phase involved de-
veloping a random forest algorithm using various features
extracted from the EEG and ECG data, as shown in Fig-
ure 1. Moving onto the official phase, however, we sought
to take advantage of the large amount of available data, so
we used deep learning techniques. We also sought to take
advantage of the attention mechanism, which essentially
uses weighted multiplication to focus on parts of the input
that correlate most with the model output [14].

However, since the score obtained in the unofficial phase
showed promise, albeit not optimal, we wanted to use the
random forest architecture. Hence, our first algorithm in-
volved designing an artificial neural network in a structure
similar to a random forest using the principles of decision
trees and attention [15–17]. The first algorithm, dubbed
RF-N1, consists of a fully connected layer with rectified
linear units (ReLU) activation and batch normalization fol-
lowed by an output fully connected layer with Softmax
activation and an additional twist: that output layer is, in
turn, followed by a local self-attention layer with ten heads
and ten keys and queries. The aforementioned make up a
”tree,” and we include 1,000 ”trees” in parallel for each
configuration. The outputs from the ”trees” are connected
to a weighted addition layer, which is in turn connected to
a global attention layer that then feeds into the final classi-
fication (outcome) or regression (CPC) layer. The second
configuration is dubbed RF-N2 and is similar in structure.
Still, instead of inputting the whole input, we input only
half of it, like ”bagging” into the first fully connected layer
in each ”tree,” and the second half is fed into the second
fully connected layer in the ”tree.” Figure 2 describes both
random forest-based neural networks.

The second algorithm involves inputting the extracted
features into a self-attention layer with four heads and four
keys, followed by a feed-forward block comprising two
fully connected layers with as many units as the square
of the number of features in each. One fully connected
layer with 10,000 units and the SoftMax and classifica-
tion/regression layer are added afterward. This transformer
network, as shown in Figure 3, is adapted from Baevski et
al.’s work, but feature and positional encoding are omitted
[18].

We use the data of 486 subjects for training and 10-fold
cross-validation and 121 subjects for testing and gauge
performance based on classification accuracy, F-measure,
and area under the receiver operating characteristics curve
(AUROC), and regression mean absolute error (MAE).
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Figure 2. The novel approach utilized in the official phase
of the challenge. Patient Information is described in the
final paragraph of Section 1.

Figure 3. The second algorithm. Extracted features are
described in Figure 2.

3. Results

During experimentation, we would gauge the perfor-
mance of our outcome classification models based on ac-
curacy and our CPC regression models based on the mean
square error. Still, in the end, the best model is selected
based on the Challenge Score metric. The challenge score
is defined as the true positive rate (TPR) at a false positive
rate (FPR) of 0.05 after 72 hours post-ROSC at each hos-
pital for outcome classification as shown in Equations 1
and 2. θh is the largest decision threshold for hospital h,
and the true positive, false positive, and false negative in
Equation 2 represent the sum of true positive, false posi-

Table 1. Testing results with the 121 subjects from the
unofficial phase set, Challenge scores obtained in the un-
official phase (RF) and official phase (RF-N1 and Trans-
former), and cross-validation challenge scores with the 486
subjects.

Algorithm
Random

Forest (RF) RF-N1 Transformer

Accuracy (%) 71.83 45.50 62.00
F-Measure (%) 55.58 42.60 61.20

AUROC 1.00 0.638 0.658
CPC - MAE 1.66 3.98 2.49

Challenge Score 0.29 0.00 0.00
Cross-Validation Score 0.30 0.18 0.20

tive, and false negative, respectively, over all hospitals at
their respective largest decision threshold θh.

FPRθh =
FPθh

FPθh + TNθh

< 0.05 (1)

ChallengeScore(TPR) =
TP

FP + FN
(2)

Our successful submissions yielded a Challenge Score
of 0.00 for all recording times (12-72 hours), likely due
to the small number of features as present in the provided
feature extraction function, so instead, we show the afore-
mentioned metrics in Table 1 for our baseline model (ran-
dom forest with surrogate decision split and using features
such as power spectral densities and phase locking values),
the better-performing random forest-based network, and
the transformer network.

4. Discussion

We mainly use the metrics stated earlier like accuracy
and F-measure due to their ubiquity in literature and due
to unsatisfactory official Challenge scores. Furthermore,
we developed our models using the unofficial phase dataset
because it is smaller than the official dataset. However, a
few subjects from the official dataset were used to ensure
our models more or less worked on that set.

Despite the subpar official 72-hour Challenge Score
achieved by our models, they performed moderately in
terms of classification accuracy at around 62 %, so we
believe remedying the errors in the unsuccessful submis-
sions, as well as optimization of the extracted features,
feature selection, pre-processing, and network structure
would yield promising results in terms of both accuracy
and challenge score. However, if we look past training
time and computational cost, we could train our models
directly with the available EEG and ECG signals, enhanc-
ing performance even more. Further future work could in-
volve using different models for regression and classifica-
tion since the regression models’ training performance was
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sub-optimal when utilizing the same network as the classi-
fication ones. In this vein, we foresee that employing data
augmentation methods could boost the models’ outcomes.

5. Conclusion

Brain injury is a common complication following car-
diac arrest, and an accurate and rapid prognosis of neu-
rological recovery can be unfeasible in many settings, not
to mention subjective, possibly causing preventable death.
Therefore, an automated prognosis means could save time,
money, and, more importantly, lives. To that end, we use
the I-CARE dataset provided for the George B. Moody
Physionet Challenge 2023 to develop models that would
classify neurological outcomes and CPC from patients
with known neurological outcomes and CPC, among other
information, as well as their EEG and ECG signals. We use
the patient information and features extracted from both
signals to develop our classification and regression models
to keep the computational cost down and temporal resolu-
tion up. Our main model was a neural network that utilized
the attention mechanism in a random forest-like structure
and yielded an accuracy, F-measure, and a CPC mean ab-
solute error and we believe that, without time constraints,
we can develop more robust models.
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